广告询价加入QQ群加入微信群 简体中文

世界先进制造技术论坛AMT—领先的高科技先进制造产业服务平台

发表于 2016-5-25 15:09:07 | 显示全部楼层 |阅读模式
今天,我们邀请到慧眼科技研发总监李汉曦,为我们带来深度学习与计算机视觉方面的内容分享。
嘉宾介绍:李汉曦,慧眼科技研发总监,澳大利亚国立大学博士;曾任澳大利亚国家信息通信公司(NICTA)任高级研究员;人脸识别,物体检测,物体跟踪、深度学习方面的专家,在TPAMI,TIP, TNNLS和Pattern Recognition等权威期刊,以及CVPR,ECCV,BMVC, ACCV等领域内重要会议发表过有影响力的论文;现为澳大利亚格里菲斯大学客座研究员,江西师范大学特聘教授。

人工智能是人类一个非常美好的梦想,跟星际漫游和长生不老一样。我们想制造出一种机器,使得它跟人一样具有一定的对外界事物感知能力,比如看见世界。
在上世纪50年代,数学家图灵提出判断机器是否具有人工智能的标准:图灵测试。即把机器放在一个房间,人类测试员在另一个房间,人跟机器聊天,测试员事先不知道另一房间里是人还是机器 。经过聊天,如果测试员不能确定跟他聊天的是人还是机器的话,那么图灵测试就通过了,也就是说这个机器具有与人一样的感知能力。
但是从图灵测试提出来开始到本世纪初,50多年时间有无数科学家提出很多机器学习的算法,试图让计算机具有与人一样的智力水平,但直到2006年深度学习算法的成功,才带来了一丝解决的希望。
众星捧月的深度学习
深度学习在很多学术领域,比非深度学习算法往往有20-30%成绩的提高。很多大公司也逐渐开始出手投资这种算法,并成立自己的深度学习团队,其中投入最大的就是谷歌,2008年6月披露了谷歌脑项目。2014年1月谷歌收购DeepMind,然后2016年3月其开发的Alphago算法在围棋挑战赛中,战胜了韩国九段棋手李世石,证明深度学习设计出的算法可以战胜这个世界上最强的选手。
在硬件方面,Nvidia最开始做显示芯片,但从2006及2007年开始主推用GPU芯片进行通用计算,它特别适合深度学习中大量简单重复的计算量。目前很多人选择Nvidia的CUDA工具包进行深度学习软件的开发。
微软从2012年开始,利用深度学习进行机器翻译和中文语音合成工作,其人工智能小娜背后就是一套自然语言处理和语音识别的数据算法。
百度在2013年宣布成立百度研究院,其中最重要的就是百度深度学习研究所,当时招募了著名科学家余凯博士。不过后来余凯离开百度,创立了另一家从事深度学习算法开发的公司地平线。
Facebook和Twitter也都各自进行了深度学习研究,其中前者携手纽约大学教授Yann Lecun,建立了自己的深度学习算法实验室;2015年10月,Facebook宣布开源其深度学习算法框架,即Torch框架。Twitter在2014年7月收购了Madbits,为用户提供高精度的图像检索服务。
前深度学习时代的计算机视觉
互联网巨头看重深度学习当然不是为了学术,主要是它能带来巨大的市场。那为什么在深度学习出来之前,传统算法为什么没有达到深度学习的精度?
在深度学习算法出来之前,对于视觉算法来说,大致可以分为以下5个步骤:特征感知,图像预处理,特征提取,特征筛选,推理预测与识别。早期的机器学习中,占优势的统计机器学习群体中,对特征是不大关心的。
我认为,计算机视觉可以说是机器学习在视觉领域的应用,所以计算机视觉在采用这些机器学习方法的时候,不得不自己设计前面4个部分。
但对任何人来说这都是一个比较难的任务。传统的计算机识别方法把特征提取和分类器设计分开来做,然后在应用时再合在一起,比如如果输入是一个摩托车图像的话,首先要有一个特征表达或者特征提取的过程,然后把表达出来的特征放到学习算法中进行分类的学习。
过去20年中出现了不少优秀的特征算子,比如最著名的SIFT算子,即所谓的对尺度旋转保持不变的算子。它被广泛地应用在图像比对,特别是所谓的structure from motion这些应用中,有一些成功的应用例子。另一个是HoG算子,它可以提取物体,比较鲁棒的物体边缘,在物体检测中扮演着重要的角色。
这些算子还包括Textons,Spin image,RIFT和GLOH,都是在深度学习诞生之前或者深度学习真正的流行起来之前,占领视觉算法的主流。
几个(半)成功例子
这些特征和一些特定的分类器组合取得了一些成功或半成功的例子,基本达到了商业化的要求但还没有完全商业化。
  • 一是八九十年代的指纹识别算法,它已经非常成熟,一般是在指纹的图案上面去寻找一些关键点,寻找具有特殊几何特征的点,然后把两个指纹的关键点进行比对,判断是否匹配。
  • 然后是2001年基于Haar的人脸检测算法,在当时的硬件条件下已经能够达到实时人脸检测,我们现在所有手机相机里的人脸检测,都是基于它或者它的变种。
  • 第三个是基于HoG特征的物体检测,它和所对应的SVM分类器组合起来的就是著名的DPM算法。DPM算法在物体检测上超过了所有的算法,取得了比较不错的成绩。

但这种成功例子太少了,因为手工设计特征需要大量的经验,需要你对这个领域和数据特别了解,然后设计出来特征还需要大量的调试工作。说白了就是需要一点运气。
另一个难点在于,你不只需要手工设计特征,还要在此基础上有一个比较合适的分类器算法。同时设计特征然后选择一个分类器,这两者合并达到最优的效果,几乎是不可能完成的任务。
仿生学角度看深度学习
如果不手动设计特征,不挑选分类器,有没有别的方案呢?能不能同时学习特征和分类器?即输入某一个模型的时候,输入只是图片,输出就是它自己的标签。比如输入一个明星的头像,出来的标签就是一个50维的向量(如果要在50个人里识别的话),其中对应明星的向量是1,其他的位置是0。
这种设定符合人类脑科学的研究成果。
1981年诺贝尔医学生理学奖颁发给了David Hubel,一位神经生物学家。他的主要研究成果是发现了视觉系统信息处理机制,证明大脑的可视皮层是分级的。他的贡献主要有两个,一是他认为人的视觉功能一个是抽象,一个是迭代。抽象就是把非常具体的形象的元素,即原始的光线像素等信息,抽象出来形成有意义的概念。这些有意义的概念又会往上迭代,变成更加抽象,人可以感知到的抽象概念。
像素是没有抽象意义的,但人脑可以把这些像素连接成边缘,边缘相对像素来说就变成了比较抽象的概念;边缘进而形成球形,球形然后到气球,又是一个抽象的过程,大脑最终就知道看到的是一个气球。
模拟人脑识别人脸,也是抽象迭代的过程,从最开始的像素到第二层的边缘,再到人脸的部分,然后到整张人脸,是一个抽象迭代的过程。
再比如看到图片中的摩托车,我们可能在脑子里就几微秒的时间,但是经过了大量的神经元抽象迭代。对计算机来说最开始看到的根本也不是摩托车,而是RGB图像三个通道上不同的数字。
所谓的特征或者视觉特征,就是把这些数值给综合起来用统计或非统计的形式,把摩托车的部件或者整辆摩托车表现出来。深度学习的流行之前,大部分的设计图像特征就是基于此,即把一个区域内的像素级别的信息综合表现出来,利于后面的分类学习。
如果要完全模拟人脑,我们也要模拟抽象和递归迭代的过程,把信息从最细琐的像素级别,抽象到“种类”的概念,让人能够接受。
卷积的概念
计算机视觉里经常使卷积神经网络,即CNN,是一种对人脑比较精准的模拟。
什么是卷积?卷积就是两个函数之间的相互关系,然后得出一个新的值,他是在连续空间做积分计算,然后在离散空间内求和的过程。实际上在计算机视觉里面,可以把卷积当做一个抽象的过程,就是把小区域内的信息统计抽象出来。
比如,对于一张爱因斯坦的照片,我可以学习n个不同的卷积和函数,然后对这个区域进行统计。可以用不同的方法统计,比如着重统计中央,也可以着重统计周围,这就导致统计的和函数的种类多种多样,为了达到可以同时学习多个统计的累积和。
上图中是,如何从输入图像怎么到最后的卷积,生成的响应map。首先用学习好的卷积和对图像进行扫描,然后每一个卷积和会生成一个扫描的响应图,我们叫response map,或者叫feature map。如果有多个卷积和,就有多个feature map。也就说从一个最开始的输入图像(RGB三个通道)可以得到256个通道的feature map,因为有256个卷积和,每个卷积和代表一种统计抽象的方式。
在卷积神经网络中,除了卷积层,还有一种叫池化的操作。池化操作在统计上的概念更明确,就是一个对一个小区域内求平均值或者求最大值的统计操作。
带来的结果是,如果之前我输入有两个通道的,或者256通道的卷积的响应feature map,每一个feature map都经过一个求最大的一个池化层,会得到一个比原来feature map更小的256的feature map。
在上面这个例子里,池化层对每一个2X2的区域求最大值,然后把最大值赋给生成的feature map的对应位置。如果输入图像是100×100的话,那输出图像就会变成50×50,feature map变成了一半。同时保留的信息是原来2X2区域里面最大的信息。
操作的实例:LeNet网络
Le顾名思义就是指人工智能领域的大牛Lecun。这个网络是深度学习网络的最初原型,因为之前的网络都比较浅,它较深的。LeNet在98年就发明出来了,当时Lecun在AT&T的实验室,他用这一网络进行字母识别,达到了非常好的效果。
怎么构成呢?输入图像是32×32的灰度图,第一层经过了一组卷积和,生成了6个28X28的feature map,然后经过一个池化层,得到得到6个14X14的feature map,然后再经过一个卷积层,生成了16个10X10的卷积层,再经过池化层生成16个5×5的feature map。
从最后16个5X5的feature map开始,经过了3个全连接层,达到最后的输出,输出就是标签空间的输出。由于设计的是只要对0到9进行识别,所以输出空间是10,如果要对10个数字再加上26个大小字母进行识别的话,输出空间就是62。62维向量里,如果某一个维度上的值最大,它对应的那个字母和数字就是就是预测结果。
压在骆驼身上的最后一根稻草
从98年到本世纪初,深度学习兴盛起来用了15年,但当时成果泛善可陈,一度被边缘化。到2012年,深度学习算法在部分领域取得不错的成绩,而压在骆驼身上最后一根稻草就是AlexNet。
AlexNet由多伦多大学几个科学家开发,在ImageNet比赛上做到了非常好的效果。当时AlexNet识别效果超过了所有浅层的方法。此后,大家认识到深度学习的时代终于来了,并有人用它做其它的应用,同时也有些人开始开发新的网络结构。
其实AlexNet的结构也很简单,只是LeNet的放大版。输入是一个224X224的图片,是经过了若干个卷积层,若干个池化层,最后连接了两个全连接层,达到了最后的标签空间。
去年,有些人研究出来怎么样可视化深度学习出来的特征。那么,AlexNet学习出的特征是什么样子?在第一层,都是一些填充的块状物和边界等特征;中间的层开始学习一些纹理特征;更高接近分类器的层级,则可以明显看到的物体形状的特征。
最后的一层,即分类层,完全是物体的不同的姿态,根据不同的物体展现出不同姿态的特征了。
可以说,不论是对人脸,车辆,大象或椅子进行识别,最开始学到的东西都是边缘,继而就是物体的部分,然后在更高层层级才能抽象到物体的整体。整个卷积神经网络在模拟人的抽象和迭代的过程。
为什么时隔20年卷土重来?
我们不禁要问:似乎卷积神经网络设计也不是很复杂,98年就已经有一个比较像样的雏形了。自由换算法和理论证明也没有太多进展。那为什么时隔20年,卷积神经网络才能卷土重来,占领主流?
这一问题与卷积神经网络本身的技术关系不太大,我个人认为与其他一些客观因素有关。
  • 首先,卷积神经网络的深度太浅的话,识别能力往往不如一般的浅层模型,比如SVM或者boosting。但如果做得很深,就需要大量数据进行训练,否则机器学习中的过拟合将不可避免。而2006及2007年开始,正好是互联网开始大量产生各种各样的图片数据的时候。
  • 另外一个条件是运算能力。卷积神经网络对计算机的运算要求比较高,需要大量重复可并行化的计算,在当时CPU只有单核且运算能力比较低的情况下,不可能进行个很深的卷积神经网络的训练。随着GPU计算能力的增长,卷积神经网络结合大数据的训练才成为可能。
  • 最后一点就是人和。卷积神经网络有一批一直在坚持的科学家(如Lecun)才没有被沉默,才没有被海量的浅层方法淹没。然后最后终于看到卷积神经网络占领主流的曙光。

深度学习在视觉上的应用
计算机视觉中比较成功的深度学习的应用,包括人脸识别,图像问答,物体检测,物体跟踪
人脸识别
这里说人脸识别中的人脸比对,即得到一张人脸,与数据库里的人脸进行比对;或同时给两张人脸,判断是不是同一个人。
这方面比较超前的是汤晓鸥教授,他们提出的DeepID算法在LWF上做得比较好。他们也是用卷积神经网络,但在做比对时,两张人脸分别提取了不同位置特征,然后再进行互相比对,得到最后的比对结果。最新的DeepID-3算法,在LWF达到了99.53%准确度,与肉眼识别结果相差无几。
图片问答问题
这是2014年左右兴起的课题,即给张图片同时问个问题,然后让计算机回答。比如有一个办公室靠海的图片,然后问“桌子后面有什么”,神经网络输出应该是“椅子和窗户”。
这一应用引入了LSTM网络,这是一个专门设计出来具有一定记忆能力的神经单元。特点是,会把某一个时刻的输出当作下一个时刻的输入。可以认为它比较适合语言等,有时间序列关系的场景。因为我们在读一篇文章和句子的时候,对句子后面的理解是基于前面对词语的记忆。
图像问答问题是基于卷积神经网络和LSTM单元的结合,来实现图像问答。LSTM输出就应该是想要的答案,而输入的就是上一个时刻的输入,以及图像的特征,及问句的每个词语。
物体检测问题Region CNN
深度学习在物体检测方面也取得了非常好的成果。2014年的Region CNN算法,基本思想是首先用一个非深度的方法,在图像中提取可能是物体的图形块,然后深度学习算法根据这些图像块,判断属性和一个具体物体的位置。
为什么要用非深度的方法先提取可能的图像块?因为在做物体检测的时候,如果你用扫描窗的方法进行物体监测,要考虑到扫描窗大小的不一样,长宽比和位置不一样,如果每一个图像块都要过一遍深度网络的话,这种时间是你无法接受的。
所以用了一个折中的方法,叫Selective Search。先把完全不可能是物体的图像块去除,只剩2000左右的图像块放到深度网络里面判断。那么取得的成绩是AP是58.5,比以往几乎翻了一倍。有一点不尽如人意的是,region CNN的速度非常慢,需要10到45秒处理一张图片。
Faster R-CNN方法
而且我在去年NIPS上,我们看到的有Faster R-CNN方法,一个超级加速版R-CNN方法。它的速度达到了每秒七帧,即一秒钟可以处理七张图片。技巧在于,不是用图像块来判断是物体还是背景,而把整张图像一起扔进深度网络里,让深度网络自行判断哪里有物体,物体的方块在哪里,种类是什么?
经过深度网络运算的次数从原来的2000次降到一次,速度大大提高了。
Faster R-CNN提出了让深度学习自己生成可能的物体块,再用同样深度网络来判断物体块是否是背景?同时进行分类,还要把边界和给估计出来。
Faster R-CNN可以做到又快又好,在VOC2007上检测AP达到73.2,速度也提高了两三百倍。
YOLO
去年FACEBOOK提出来的YOLO网络,也是进行物体检测,最快达到每秒钟155帧,达到了完全实时。它让一整张图像进入到神经网络,让神经网络自己判断这物体可能在哪里,可能是什么。但它缩减了可能图像块的个数,从原来Faster R-CNN的2000多个缩减缩减到了98个。
同时取消了Faster R-CNN里面的RPN结构,代替Selective Search结构。YOLO里面没有RPN这一步,而是直接预测物体的种类和位置。
YOLO的代价就是精度下降,在155帧的速度下精度只有52.7,45帧每秒时的精度是63.4。
SSD
在arXiv上出现的最新算法叫Single Shot MultiBox Detector,即SSD。
它是YOLO的超级改进版,吸取了YOLO的精度下降的教训,同时保留速度快的特点。它能达到58帧每秒,精度有72.1。速度超过Faster R-CNN 有8倍,但达到类似的精度。
物体跟踪
所谓跟踪,就是在视频里面第一帧时锁定感兴趣的物体,让计算机跟着走,不管怎么旋转晃动,
作者:张驰
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册 |

本版积分规则

主题 682 | 回复: 699

QQ|联系我们|法律声明|用户协议|AMT咨询|商务合作|会员入驻|积分充值|积分商城|积分奖励规则|TradEx全球购|加入QQ技术群|添加企业微信|加入微信技术群| 世界先进制造技术论坛 ( 沪ICP备12020441号-3 )

GMT+8, 2024-4-29 10:22 , Processed in 0.029910 second(s), 34 queries , Redis On.

论坛声明:《世界先进制造技术论坛》属纯技术性非赢利性论坛,请勿发布非法言论、非法广告等信息,多谢合作。
本论坛言论纯属发表者个人意见且会员单独承担发表内容的法律责任,与本论坛立场无关;会员参与本论坛讨论必须遵守中华人民共和国法律法规,凡涉及政治言论、色情、毒品、违法枪支销售等信息一律删除,并将积极配合和协助有关执法机关的调查,请所有会员注意!
本论坛资源由会员在本论坛发布,版权属于原作者;论坛所有资源为会员个人学习使用,请勿涉及商业用途并请在下载后24小时删除;如有侵犯原作者的版权和知识产权,请来信告知,我们将立即做出处理和回复,谢谢合作!

合作联系: 双日QQ客服:3419347041    单日QQ客服:3500763653    电话021-37709287    合作问题投诉:QQ:2969954637    邮箱:info@amtbbs.org    微信公众号:AMTBBS

 

快速回复 返回顶部 返回列表